THERMAL SYNTHESIS OF THE (Bi₂O₃)_{1-x}(Er₂O₃)_x PIGMENTS

Petra Šulcová^{*} and M. Trojan

Department of Inorganic Technology, Faculty of Chemical Technology, University of Pardubice, Legions Sq. 565, 532 10 Pardubice, Czech Republic

The synthesis of new compounds based on Bi_2O_3 is investigated because they can be used as new environmentally friendly inorganic pigments. Chemical compounds of the $(Bi_2O_3)_{1-x}(Er_2O_3)_x$ type were synthetized. The host lattice of these pigments is Bi_2O_3 that is doped by Er^{3+} ions. The incorporation of doped ions provides interesting colours and contributes to an increase in the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments.

Keywords: bismuth-rare earth mixed oxides, colour properties, ecological pigments, inorganic pigments, thermal analysis

Introduction

The inorganic pigments in yellow, orange, red and maroon colours are always insufficiently represented for colouring of plastics, paints and ceramics. The majority of inorganic pigments for these applications currently contains the toxic metals such as cadmium, lead and hexavalent chromium. Thus, serious need arises to research for materials of environmentally friendly and economically viable materials for the replacement of toxic inorganic pigments [1].

From this point of view just pigments on the base of Bi_2O_3 belong to pigments of oxide types and seem to be interesting, because they provide interesting colour hues from yellow to orange [2]. Intense colours of these pigments are based on the incorporation of doped Ln ions into the host lattice of Bi_2O_3 . The Bi_2O_3 itself is a light yellow powder.

The high temperature phase of δ -Bi₂O₃, which is stable in the 730–825°C temperature range, has been intensively studied due to its high oxygen-ion conductivity [3]. The structure of the δ -phase is based on a face centered cubic cation sublattice and can be described as a defective fluorite structure where 1/4 of the anion sites are vacant. This high oxygen vacancy concentration gives rise to a high oxygen-ion mobility. The δ -phase may be stabilized below room temperature by partial cationic substitution for Bi³⁺. Thus, the use of Ln³⁺ cations (Ln: lanthanide or yttrium) has been appeared effective though a variety of crystal phases have been observed depending on the kind and amount of the rare earth cation used and the synthesis conditions employed [4, 5].

In the present study, the new pigments having the formula $(Bi_2O_3)_{1-x}(Er_2O_3)_x$ with various erbium

concentration levels have been prepared and their colour properties, as possible ecological inorganic pigments have been investigated. The optimum calcination temperature for pigment synthesis was determined on the base of the simultaneous TG-DTA measurements that can provide the information about the temperature region of the pigment formation.

Experimental

As starting materials we used bismuth oxide (III) of 99% purity (Merck, Germany) and Er_2O_3 with 99% purity (Indian Rare Earths Ltd., India). Mixed oxides $(Bi_2O_3)_{1-x}(Er_2O_3)_x$, where x=0.1, 0.2, 0.3, 0.4 and 0.5, have been prepared. The synthesis of the samples was carried out in corundum crucibles from stoichiometric amounts of Bi_2O_3 and Er_2O_3 which were mixed at an agate mortar. The starting mixtures were then calcinated in air at electric furnace at required temperature (the increase of the temperature was 10° C min⁻¹). The samples were calcinated at 800° C for 3 h.

All prepared pigments were applied into organic matrix (Balakom, a.s., Czech Republic) in mass tone. The final applications were evaluated with regard to their colour hues by measurements of spectral reflectance in the visible region of light (400–700 nm) using a MiniScan (HunterLab, USA). The measurement conditions were following: an illuminant D65, 10° complementary observer and measuring geometry $d/8^{\circ}$ [6].

The colour properties are described in terms of *CIE* $L^*a^*b^*$ system. The values a^* (the axis redgreen) and b^* (the axis yellow-blue) indicate the colour hue. The value L^* represents the lightness or dark-

^{*} Author for correspondence: Petra.Sulcova@upce.cz

ness of the colour as related to a neutral gray scale. In the $L^*a^*b^*$ system it is described by numbers from zero (black) to hundred (white). The value *C* (chroma) represents saturation of the colour and is calculated according to the formula: $C=(a^{*2}+b^{*2})^{1/2}$. The hue angle H^0 is defined by an angular position in the cylindrical colour space (for the red is $H^0=0-35^\circ$, for the orange $H^0=35-70^\circ$, for the yellow $H^0=$ $70-105^\circ$).

The methods of thermal analysis can provide the first information about the temperature region of the formation of inorganic pigments. The formation of these pigments was followed by thermal analysis using STA 449C Jupiter (NETZSCH, Germany) which allows the simultaneous registration of the thermoanalytical curves TG and DTA. The starting raw material and the prepared starting mixtures were studied by thermal analysis in corundum crucible in air in temperature region from 100 to 1000°C. The increase of temperature was 10° C min⁻¹. α -Al₂O₃ was used as reference material [7].

The products were also analysed by high-temperature microscopy (MHO-2, Zeiss Jena, Germany) to estimate their temperatures of melting.

The powder pigments were also studied by X-ray diffraction analysis. The X-ray diffractograms of the samples were obtained using by equipment Diffractometer D8 (Bruker, GB), CuK_{α} radiation with scintillation detector.

Results and discussion

The influence of the increasing content of erbium on the colouring effect of the $(Bi_2O_3)_{1-x}(Er_2O_3)_x$ pigments was studied. The colour properties of the $(Bi_2O_3)_{1-x}(Er_2O_3)_x$ samples prepared at temperature 800°C and applied into organic matrix in mass tone are given in Table 1. From Table 1 it follows that the increasing content of Er decreases value L^* (lightness) and the pigments become the darkest. The value a^* (red hue) decreases with the increasing Er content and at the same time the value b^* (yellow hue) increases. The chroma C increases from x=0.1 to x=0.3then value C a little decreases. The pigment with x=0.3 has the highest value C (chroma). This pigment gives the best colour result because is characterized by intensive orange colour ($H^0=63.10$). The pigments having x from 0.1 to 0.3 produce light orange hues. The highest Er content makes intensive yellow-orange hues (H^0 is about 64).

The structure of the $(Bi_2O_3)_x(Er_2O_3)_x$ pigments was also investigated by X-ray diffraction analysis. These samples are homogeneous in whole range of *x* from 0.1 to 0.5. X-ray diffraction patterns of these compounds can be indexed in an f.c.c. fluorite-type

Table 1 The effect of increasing Er content on the colourproperties of the (Bi₂O₃)_{1-x}(Er₂O₃)_x pigments appliedinto organic matrix

x	L^*	<i>a</i> *	<i>b</i> *	С	H^{0}
0.1	69.63	28.18	48.27	55.89	59.72
0.2	67.53	27.71	50.52	57.62	61.26
0.3	64.21	26.79	52.81	59.22	63.10
0.4	63.96	26.11	53.09	59.16	63.81
0.5	63.31	25.25	53.16	58.85	64.59

Fig. 1 The X-ray pattern of the sample Bi_{1.4}Er_{0.6}O₃ obtaining by calcination at 800°C

cell. The pigment has a cubic symetry with lattice parameter a=0.5465 for x=0.3. This value of lattice parameter a is lower than value of lattice parameter a=0.5665 nm of stable modification δ -Bi₂O₃. The decrease observed obviously results from different sizes of bismuth and lanthanides ions (r(Bi³⁺)=0.120 nm, r(Er³⁺)=0.096 nm).

The formation of these pigments was followed by the methods of thermal analysis (TG-DTA). Thermoanalytical curves of starting oxide Bi₂O₃ are given in Fig. 2. The DTA curve shows the two endothermic effects. The first peak with temperature minimum at 736°C corresponds with the change of monoclinic modification α -Bi₂O₃ to cubic modification δ -Bi₂O₃. The second peak with minimum at 820°C is connected with melting of δ -Bi₂O₃. TG curve of starting oxide Bi₂O₃ indicates the mass loss (0.78%) at the temperature range from 100 to 600°C (Fig. 2). This process is represented by the partial oxygen loss (Table 2) because Bi₂O₃ is known as oxide with the excess of oxygen in its crystal

Table 2 Thermal demeanor of Bi₂O₃ (Fig. 2)

Temperature range/°C	Peak temperature/°C	Mass loss/%	
100-270	_	0.08	
270-340	308	0.10	
340-400	380	0.30	
400-600	-	0.30	
600-1000	736	0.02	
	820		

Fig. 2 TG and DTA curves of Bi₂O₃ (mass of sample: 256.90 mg, atmosphere: air, heating rate: 10°C min⁻¹)

 Table 3 Thermal demeanor of the mixture for synthesis
 Bi1.4Er0.6O3 (Fig. 3)

Temperature range/°C	Peak temperature/°C	Mass loss/%
100–320	314	0.12
320-435	401	0.28
435-600	_	0.24
600–1000	731	0.02

lattice [4, 5]. This effect is connected at the DTA curve only with two slight breaks at the temperature about 308 and 380°C.

Starting mixture for the pigment preparation with composition $Bi_{1.4}Er_{0.6}O_3$ was homogenized in an agate mortar and studied with using of DTA (Fig. 3). TG curve indicates the mass loss (0.64%) at the temperature range from 100 to 600°C (Table 3). This process is represented by two slight breaks at the DTA curve at temperature about 314 and 401°C and corresponds with continual oxygen loss from Bi_2O_3 . In comparison with the starting oxide (308 and 380°C), the processes move 6 and 21°C higher. Growing temperature indicates the endothermic effect at the DTA curve with minimum at 731°C which is connected with dissolution of Er_2O_3 in Bi_2O_3 during the heat

Fig. 3 TG and DTA curves of mixture for synthesis Bi_{1.4}Er_{0.6}O₃ (mass of sample: 898.30 mg, atmosphere: air, heating rate: 10°C min⁻¹)

Table 4 Melting temperatures of the $(Bi_2O_3)_{1-x}(Er_2O_3)_x$ pigments

x	0.1	0.2	0.3	0.4	0.5
$T_{\rm melt}/^{\circ}{\rm C}$	1080	1130	1180	1220	1250

treatment of the starting mixture forming a solid solution of both oxides.

The prepared pigments were also analysed by the high-temperature microscope to estimate their temperatures of melting (Table 4). The growing content of Er increases melting temperature of pigments from 1080°C (x=0.1) to 1250°C (x=0.5), although melting temperature of pure Bi₂O₃ is only 820°C. The doping of lanthanide ions into Bi₂O₃ has positive effect on thermal stability of prepared pigments.

Conclusions

The compounds $(Bi_2O_3)_{1-x}(Er_2O_3)_x$, where x=0.1, 0.2, 0.3, 0.4 and 0.5, were studied. It was determined that the area of solubility Er_2O_3 in Bi_2O_3 at temperature 800°C forming solid solution of both oxides is for whole range *x*. The presence of Er^{3+} in Bi_2O_3 makes intense orange or yellow–orange colour. The best orange colour gives pigment $Bi_{1,4}Er_{0,6}O_3$.

It is available to prepare pigments of $(Bi_2O_3)_{1-x}(Er_2O_3)_x$ type having colour hues as chromate pigments by doping of lanthanide ions (Er^{3+}) into Bi_2O_3 but their high stability is significantly higher. Prepared pigments indicate the increase of their melting temperatures even above 1000°C, although melting temperature of pure Bi_2O_3 was only 820°C. This fact can give a direction for colouring of ceramic glazes because most of glazes melt at temperatures about 1000°C. First experiments perform hopeful results after their application into ceramic glazes, too.

Acknowledgements

The work was supported by Grant Agency of Czech Republic by grant No. 104/04/1078.

References

- M. Trojan, Z. Šolc and M. Novotný, Pigments, Kirk-Othmer Encyclopedia of Chem. Technol., p. 45, Vol. 19, J. Wiley and Sons Inc., New York 1996.
- 2 P. Prabhakar Rao and M. L. P. Reddy, Dyes and Pigments, 63 (2004) 69.
- 3 A. Watanabe, Solid State Ionics, 176 (2005) 2423.
- 4 T. Takahashi and H. Iwahara, Mater. Res. Bull., 13 (1978) 1447.
- 5 B. Gonzalvo, J. Romero, F. Fernandez and M. J. Torralvo, J. Alloys Compd., 323 (2001) 372.
- 6 P. Šulcová and M. Trojan, J. Therm. Anal. Cal., 77 (2004) 99.
- 7 V. Petkova, Y. Pelovski, P. Kostadinova and I. Dombalov, J. Therm. Anal. Cal., 80 (2005) 709.

DOI: 10.1007/s10973-006-8101-5